Optimal Tiered Reserve Remuneration

Philipp Ulbing Vienna Graduate School of Economics philipp.ulbing@univie.ac.at FUIF

Der Wissenschaftsfonds.

Vienna Graduate School of Economics

Introduction/Research Question

- Introduction of negative interest rate policy (NIRP) in various countries/financial systems
 - To ensure accommodative stance of monetary policy
 - NIRP brings along detrimental side effects that are absent with rate cuts in positive territory
 - "...at some point the level of rates can become low to the extent that the detrimental effects on the banking sector outweigh the benefits of lower rates." (Benoît Coeuré, 2016)

Motivation and Stylized Facts

- Setup of tiered reserve systems is very different
 - Rule in the Euro Area is of an ad-hoc fashion $\Rightarrow 6$ times the minimum reserve requirements (MRR)
- Impact of negative reserve remuneration has become more significant over the past few years
 - Interest payments on excess liquidity in the Euro Area rose by 257% from €5 to €18.1 billion since December 2019 (as of June 2022)
- Hihgly relevant for policy, illustrated by the following quote:
 - "...assess the appropriate calibration of its two-tier system for reserve remuneration so that negative interest rate policy does not limit banks' intermediation capacity..." (Press Release on Monetary Policy Decisions by the ECB, 16 December 2021)
- Implementation of tiered reserve remuneration systems
 - In the Euro Area, Switzerland,
 Japan...
 - With vastly different rules

Research Questions

- What is the design of an optimal tiered reserve remuneration system?

- How successful can a tiered remuneration system be in restoring the efficiency of MP under negative interest rates?

- Which factors should a tiered remuneration system target, macro variables (e.g. output gap) or financial variables (e.g. excess liquidity, equity ratios)? • Several findings point to low (or even negative) interest rates becoming the norm in the future (e.g. Schmelzing, 2020)

Literature

Empirical:

• Ampudia and Van Heuvel (2018), Basten and Mariathasan (2018, 2020), Molyneux et al. (2019)

Theoretical:

• Brunnermeier and Koby (2019), Eggertson et al. (2019), Ulate(2021)

- The aim of the project is to study the effects of a tiered reserve remuneration system, which
 - prevents the erosion of bank capital/equity
 - while preserving the expansionary effect of monetary policy,

on the efficiency of monetary policy under low/ negative interest rate policy.

- Advantage of Ulate's (2021) framework opposed to others
 - Both beneficial and detrimental effects of NIRP on the economy
 - Positive effect via bank lending channel, negative effect via the bank net worth channel

• Model structure

Methodology

- Five types of agents: households, intermediate good producers, capital producers, retailers and banks
- Rich model is necessary to match quantitatively the behaviour of real-world economies

Distinct Features

(1) Monopolistic competition in the banking sector (CES framework) $L_{j} = \left(\frac{1+i_{j}^{l}}{1+i^{l}}\right)^{-\epsilon^{l}} L, \quad \gamma_{j} = \left(\frac{m_{j}}{m}\right)^{-\epsilon^{l}} D_{j} = \left(\frac{1+i_{j}^{d}}{1+i^{d}}\right)^{-\epsilon^{d}} D \quad \text{if } i_{j}^{d} \ge 0; \quad 0 \quad \text{if } i_{j}^{d} < 0$

Hypotheses / Potential Results

- (1) If the policy rate i is above the threshold \tilde{i} , i.e., $i > \tilde{i}$,
 - changes in the policy rate translate

– allows for expansionary negative interest rate policy

(2) Deviation cost from loan-to-equity ratio

$$\Psi(L_t(j)/F_t(j);\kappa,\nu) = \kappa\nu \frac{L_t(j)}{F_t(j)} \left(ln\left(\frac{L_t(j)}{F_t(j)}\right) - ln\nu - 1 \right) + \kappa\nu^2$$

(3) Non-immediate adjustment to optimal level of equity

- no negative dividend payments after shocks
- fraction ς of bank net worth is used up each period
- Frictions (2) and (3) ensure the existence of the bank net worth channel

$$\mathbb{E}_t(1+i_{t+1}^l) = \frac{\epsilon^l}{\epsilon^l-1}(1+i_t+\mu_t^l) + \kappa\nu\frac{\epsilon^l}{\epsilon^l-1}\left(\ln\left(\frac{L_t}{F_t}\right) - \ln(\nu)\right)$$

directly into changes in the loan and deposit rate (loan and deposit spread stay constant)

 tiered reserve system does not have any effect here

(2) If the policy rate i is below the threshold \tilde{i} but above a lower threshold \underline{i} , i.e., $\underline{i} < i < \tilde{i}$,

- changes in the policy rate compress
 the deposit spread due to the zero
 lower bound on deposits
- tiered reserve system eases pressure
 on bank equity, thereby increasing
 the efficiency of monetary policy